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The large-scale ocean circulation
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Where are we now?

e There is an observed cooling and
freshening of the subpolar gyre (SPG)

over the last century (IPCC SROCC 2019)

e This could be a fingerprint of an on-going

weakening of the Atlantic ocean
circulation (cf. Caesar et al. 2018)

e Lessons from the past both in glacial and
interglacial periods highlight that abrupt

changes/tipping points are possible
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Non linearity of the Atlantic Overturning
(AMOC)?
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e Stommel (1961) early showed that the AMOC
may exhibit strongly non-linear response to S 11 52,12
surface freshwater forcing

q
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* His simple analytical model showed that the >
AMOC may have multiple solutions for a Depth Latitude
given freshwater forcing and hysteresis N
behavior 4

* Still true in higher resolution models (cf. 2
Rahmstorf et al. 2005, Jackson et al 2018...) .
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Can the AMOC collapse?
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Large-scale impact of a substantial
weakening in the Atlantic circulation
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All cascading potential impacts
not fully assessed yet?

* Impacts on biodiversity: a new example
of cascading tipping points: Velasco et Gain
al. (2021), Ureta et al. (2022) both in
Communications Biology Melting0.5 < ! Moderate Loss
¢ | Severe
[/ Loss
&
: Extreme
Melting1 P
* A strong weakening of the AMOC can
push a number of species to cross their
own tipping point (due to changes in Melting1.5
regional climate and seasonality) Complete
reducing biodiversity Loss
Melting3




Key questions

e Can the AMOC tip in the future and on what time
frame?

o Have other circulations shown sign of potential rapid
changes?

e How can we anticipate those tipping points?
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Risk of AMOC substantial weakening
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Projections of the AMOC in CMIP6 models

* [IPCC 2021 statements:

* “The AMOC is very likely to weaken
over the 215t century for all emission
scenarios. o

* There is medium confidence that N
there will not be an abrupt collapse
before 2100 ”

AMOC anomaly (Sv)

e Spread in the AMOC is explaining a
large amount of CMIP6 uncertainty for
some key climate variables (Bellomo et .o . ey
al., Nat. Com. 2021) like T Modelledhitorcl ANOC
* the shift of the atmospheric jets, "
* the ITCZ position,

* the level of warming in the North
Atlantic region, etc.
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Long-term changes and noise induced bifurcation
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2016) | S
* Has Greenland melting played a role in the ”
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Mixed layer depth anomalies

Impacts of oceanic ———
resolution on GrlS impact | o

* We compare IPSL-CM6A Low Resolution (LR,
50-60 km) run with very High Resolution
(HR, 2-3 km) simulations from an ocean-
only model (Swingedouw et al., 2022)
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Scheme by Vincent
Hanquiez




Key questions

o Have other circulations shown sign of potential rapid
changes?
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e Two different processes

e Disruption of the AMOC (strong € s.00-
decrease of convection both in 2 A M |
the Labrador and Nordic Seas) g— \"l s 1Y

® Collapse of convection in the i

Labrador Sea : can occur in only 7.00 L4+
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Mechanisms at play
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Impacts of abrupt decadal cooling

Temperature in the UK

i | i
- ensemble mean

e Decadal climate variability can play a a key 1 Z cSIRO-Mk3-6-0
role for uncertainty at the regional scale B
(Hawkins et Sutton 2009)
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e Such impacts can be very fast (<10 years)

temperature anomaly (°C)
temperature anomaly (°C)

e They might affect climate of Europe for at
least a decade with various consequences =
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.
Proximity to a SPG tipping point? CUEp

European Climate Prediction system

e To analyse the proximity to tipping points, ‘Strafclflcgtlorj n the S.PG .
models can be useful as well, on top

classical early warning statistical approach.

T

100

e For instance, since SPG stratification is
crucial element of convection, and a useful
emergent constraint for the evolution of 200
centennial SST trend, it is interesting to
define a critical stratification

Depth (m)

300 -

e This is the stratification just before the
large drop in SST

400 - =
Present—day (2000—2014)

e When estimated in CMIP5 models, we can | osA (1968-1971) i
see that recent days are already in the Critical stratification in models
() 1 500
envelop (66%) of the models just before VSR .27f20 3 T o
their abrupt cooling... Density (kg/m?)

Swingedouw et al., Surv. Geoph., 2020



What about the Southern Ocean?

Antarctic Surface waters Surface waters Circumpolar winds  Antarctic bottom Upper-ocean
Circumpolar in northern partof  in southern part of have strengthened water has become  coverturning
Current Southern Ocean Southern Ocean since 1960s-1970s  less voluminous in circulation

° M e | twa te r fro m t h e A N ta rcti C i ce has shown have warmed have freshened {Box 3.1;3A.1.3} Southern Ocean has been

minimal change in ~ since 1980s (+++)  and cooled since and globally since  characterised by
transportduring  {3.21.2;52.22}  1980s (--) 1980s (--) decadal

S h eet can stron g | y re d uce t h e instrumental (38212,5222) {38212,5222)  variabilty (~)
record (==) —

AABW (Swingedouw et al. 2008)

Southern Ocean
eddy field

has intensified since
the early 1990s (++)

* It can even impact the NADW
formation through three main
mechanisms (Swingedouw et al.,
2009), but the seasaw remain
moderate in amplitude

AABW

Fig. 3.7 IPCC SROCC 2019




A tipping point in the
Southern Ocean?

Li et al. (2023) using a 0.1° ocean
model (ACCES-OM?2) show potential

rapid change in AABW transport Thompson et al. (TC 2020}
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Key questions

e How can we anticipate those tipping points?



How to have early warnings of a potential
AMOC collapse?

Change of temporal variability when
approaching a tipping point

Far from the tipping point: Rapid recovery to

perturbations

e Theory from dynamical system teaches us
that approaching a tipping point, the
system variability tend to increase

e Boulton et al. (2014) : we need at least
250 years to be able to apply to AMOC

Approaching the tipping point: Slower recovery to
perturbations
. ~—
e Bowers (2021) : we are approaching a

tipping point (but using AMOC
fingerprints over only the last 150 years)

No recovery, change in state

At the tipping point:

e This might be a bit short, and the new
EWS method of Boers (2021) has not
been tested in “pseudo-proxy” approach

Adapted from: Lenton 2011



Proximity to an AMOC tipping point?
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Time scale for a coming AMOC collapse?

e Climate models might be too
stable (Liu et al. 2017)

e And they underestimate key
processes (Swingedouw et al.
2022)

e Can simple dynamical system
theory help to assess time scale of
response’?

e Ditlevsen & Ditlevsen (2023) found
a risk of AMOC collapse as early as
the mid 21 century

e But the result remains sensitive to
the AMOC index chosen and of the
stochastic differential equation

SST anomaly
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Precursors of AMOC changes from observations

RAPID array might precede SST changes
by around 5 years
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The OSNAP Array

OSNAP array can further enlarge this
time scale by a few years

U
WS Alrts
BRApr Alvay

Convective activity might
provide a few more years,
and can be assessed thanks
to ARGO and satellites




Decadal predictions to gain insights on
early warnings of abrupt changes

Initial conditions

External forcing

Weather Seasonal Decadal Centennial Glacial
forecast prediction prediction projections cycles

(Inlay week month year declade century millennium

Time scale



How to properly initialise " T5-years béfore peak[5P] 0
the AMOC? : : i | ; :

e The AMOC as a key source of decadal
prediction (Persechino et al. 2013)

e The issue of the initial shock is crucial for
tippping point predictions

e Solving it can also increase prediction skill E E 5 | |

i 1 ] ! Pl ! |
of the SPG (Polkova et al. sub) 2060 2065 2070 2075 2080 2085 2090
years Persechino et al.
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What are the research gaps?

® Observation systems are needed for an efficient early warning system:

v’ Continue on-going in situ arrays and monitoring systems

v" Include more oceanic observations below 2000m

® Decadal prediction systems still need further development to:
v Diminish their offset to observations
v’ Better include meso-scale processes (parametrization, zoom)

v' Understand the spread among models

®* Need for better reconstructions of the last few thousands of years to
have more insights on the approach of a tipping point



Key take-home messages

* Ocean circulation can shift abruptly in the Atlantic and Southern
oceans

* It is difficult to assess the exact probability, but some models do
show abrupt shifts to occurs in the coming decades

* We are not ready to anticipate such shifts correctly at the moment

* Observation of key precursors and decadal prediction systems can
provide efficient early warnings of such potential abrupt changes

* Adaptation plans should include such High Impact — Low Likelihood
(HILL) events



Thank you!
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Cascades
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Cascades
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